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BACKGROUND: It is well documented that acute exposure to high levels of persistent organic pollutants,
such as polychlorinated biphenyls (PCBs), p,p dichlorophenyldichloroethylene (p,p “DDE), and hexa-
chlorobenzene (HCB), can affect human health including thyroid function. Chronic exposure to multi-
ple toxicants is common but difficult to analyze, and most prior studies have focused on adults or
newborns, creating a gap in our understanding of multitoxicant effects among adolescents.

OBJECTIVE: We investigated whether levels of PCBs, p,p -DDE, HCB, mirex, lead, and mercury
reflecting past chronic exposure are associated with alterations in levels of thyroid-stimulating
hormone (TSH), triiodothyronine (T3), total thyroxine (TTy), and free thyroxine (FT;) among
older children and adolescents.

METHODS: The sample consists of youth from the Akwesasne Mohawk Nation (7 = 232) who
reside in proximity to several industries that have contaminated the local environment. We used
multiple regression analysis to examine the effect of PCB groupings, p,p “DDE, HCB, lead, and
mercury on thyroid hormones after adjusting for sociodemographic covariates and controlling for
all other toxicants.

RESULTS: Exposure to PCBs affects the thyroid hormone profile in adolescents. The group of per-
sistent PCBs was positively associated with TSH but inversely related to FT. Nonpersistent PCBs
were significantly and negatively related to FT4 only. HCB was negatively associated with T, and
lead was positively associated with T3. Breast-fed adolescents had higher levels of persistent PCBs
and p,p -DDE but not of nonpersistent PCBs or any other toxicant when compared with non-
breast-fed adolescents. Though having lower levels of persistent PCBs and p,p -DDE, non-breast-
fed adolescents exhibited significant relationships between persistent PCBs and TSH and FT, but
breast-fed adolescents did not. It appears that PCBs from breast milk obscure the relationship
between prenatal PCB exposure and thyroid function by adding random variation in PCB levels.

CONCLUSION: Our results demonstrate a reduction in thyroid function in adolescents in relation to
their current serum levels of PCBs. These observations are consistent with the hypothesis that pre-
natal exposure to PCBs alters thyroid function in a long-lasting manner but does not exclude the
possibility that postnatal exposure is influential also.
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Exposure to persistent organic pollutants
(POPs) such as polychlorinated biphenyls
(PCBs), p,p -dichlorophenyldichloroethylene
(p,p -DDE), a metabolite of p,p - dichloro-
diphenyltrichloroethane (p,p -DDT), and
hexachlorobenzene (HCB) is a global phenom-
enon. High levels of exposure to these and
other potentially endocrine-disrupting toxi-
cants affect human health, but the full extent
of their impact remains an important area of
study (Carpenter 2006; Daston et al. 2003;
Kimbrough and Krouskas 2003; Koppe et al.
2006; Langer 2005). Experimental animal
studies have demonstrated effects of POPs on
endocrine system functioning, including thy-
roid function (Brucker-Davis 1998). These
studies typically investigate large, single-
toxicant exposures that are uncharacteristic of
most human exposure patterns. Studies in
humans have found relationships between
exposure to specific POPs and lower thyroid
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hormone levels as well as higher thyroid-stimu-
lating hormone (TSH) levels (Koopman-
Esseboom et al. 1994; Nagayama et al. 1998;
Osius et al. 1999; Persky et al. 2001; Ribas-
Fito et al. 2003; Rylander et al. 2006; Sauer
et al. 1994; Wang et al. 2005; Zuurbier et al.
2006). Langer et al. (2005) have demonstrated
that PCB exposure results in an increase in
thyroid gland volume but an inverse relation-
ship with TSH (2006). However, not all inves-
tigators have observed such associations, and as
human studies have focused almost entirely on
infants and adults (Meeker et al. 2006), the
relationship of toxicants to thyroid hormone
status in older children and adolescents is not
apparent (Hagmar 2003).

Thyroid hormones are essential, regulating
metabolism and promoting normal cardiovas-
cular, reproductive, and nervous system func-
tioning (Larsen et al. 2003). They are necessary
for normal growth and brain development

(Porterfield and Hendrich 1993), and thus may
represent a causal link between toxicants and
observed effects on somatic growth and cogni-
tive development.

The aim of the current investigation is to
assess whether levels of PCBs indicative of a
chronic exposure pattern are associated with
alterations in levels of TSH, triiodothyronine
(T3), total thyroxine (T'Ty), and free thyroxine
(FT4) among older children and adolescents.
In addition to congener-specific PCB analyses,
we also examined the effects of other common
toxicants (p,p -DDE, HCB, mirex, lead, and
mercury) on thyroid hormone levels.

Methods

Serting. The study was conducted with
mother—youth pairs who were members of the
Akwesasne Mohawk Nation (Akwesasne),
which spans the St. Lawrence River with terri-
tory in New York State and in Ontario and
Quebec, Canada. Industrial development
along the St. Lawrence River began in the
1950s and continues today, with several indus-
trial complexes located near Akwesasne. A
National Priority Superfund Site (General
Motors Central Foundry Division) and two
New York State Superfund Sites (Reynolds
Metal Company and Aluminum Company of
America) are located immediately upstream. In
the 1990s, some local animal species were
found to have levels of PCBs, p,p ~-DDE,
HCB, and mirex above human consumption
tolerance limits set by the U.S. Food and Drug
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Administration (Forti et al. 1995; Sloan and
Jock 1990). In 1986 and 1987, advisories
against eating locally caught fish were issued.
Local informants have attested to a reduction
in consumption of locally caught fish, and
studies of PCB levels in breast milk reported a
decrease in levels subsequently that is consis-
tent with adherence to the advisories
(Fitzgerald et al. 2001). Thus, adolescents born
after the fish advisories may have had less post-
natal exposure than those born before the advi-
sories, especially exposure to persistent PCBs.

Human health studies at Akwesasne,
including an investigation of adolescent devel-
opment, were prompted by the history of local
environmental pollution from the neighboring
industrial point sources. Long-standing
reliance on locally caught fish and game
(prime pathways of exposure) and concerns of
community members about the health effects
of environmental pollutants for themselves
and future generations resulted in a community-
based research collaboration.

Participants. The study began in 1995 and
ended in 2000. Study methods, including
recruitment and data collection protocols, labo-
ratory analysis methods, and substitution meth-
ods for toxicant levels below the laboratory
minimum detection limits, are briefly described
here [for greater detail, see Schell et al. (2003)].
Akwesasne community members collected all
data without prior knowledge of the exposure
status of participants. The Institutional Review
Board at the University at Albany, State
University of New York, approved all study
protocols. Informed consent, and assent from
minors, was obtained from all participants.

The target population was defined as resi-
dents of Mohawk houscholds located in the
Akwesasne Mohawk Nation and in neighbor-
ing communities within 10 miles of Akwesasne.
Mother—youth participant pairs were eligible
for the study if they lived in the same house-
hold, and if the adolescent was between the ages
of 10 and 16.99 years, not a twin, not diag-
nosed with a psychological or physical impair-
ment, and not diagnosed with fetal alcohol
syndrome or effects. Of 294 mother—youth
pairs who met the study eligibility requirements
and enrolled in the study, 271 continued par-
ticipation and had blood available for analysis.
Of the 271, 19 pairs had missing data for
covariates included in the subsequent multiple
regression analysis. Of the 252 remaining par-
ticipants, 7 youth were missing either T4 or
FT, results. Of those remaining, 13 additional
participants were excluded from this analysis
because of a change in laboratory methods for
the analysis of TSH and thyroid hormones, for
a final sample size of 232.

Blood collection and laboratory analysis.
Fasting blood specimens were collected at first
rising by trained Mohawk staff and provided
material for analysis of six toxicants (lead,

mercury, PCBs, p,p-DDE, HCB, and
mirex), cholesterol, triglycerides, TSH, and
thyroid hormones. All samples were drawn
between 1996 and 2000.

PCB and organochlorine pesticide analyses
were conducted at the Exposure Assessment
Laboratory of the University at Albany. High-
resolution, ultratrace, congener-specific analysis
was performed by parallel dual-column (split-
less injection) gas chromatography with elec-
tron capture detection on an Agilent (Santa
Clara, CA) 5890 instrument (DeCaprio et al.
2000). This method quantitates up to 83 indi-
vidual PCB congeners and 18 PCB congeners
as pairs or triplets, as well as p,p ~-DDE,
HCB, and mirex. Data were expressed on a
whole-weight basis. Analyses of lead and
mercury were conducted by Le Centre de
Toxicologie due Quebec in Sainte-Foy,
Quebec, Canada. Mercury analysis was based
on cold-vapor atomic absorption spectrome-
try using a Pharmacia (Stockholm, Sweden)
model 100 mercury monitor. Levels are
reported as the sum of organic and inorganic
mercury in micrograms per deciliter. Lead
was analyzed by Zeeman-corrected graphite
furnace atomic absorption spectrometry on a
PerkinElmer (Waltham, MA) model 4100ZL
instrument.

Assessment of cholesterol, triglycerides,
TSH, T3, T4, and FT4 was performed at
the Clinical Chemistry and Hematology
Laboratory, Wadsworth Center for Labora-
tories and Research, New York State
Department of Health (Albany, NY). The
facility is approved by the Clinical Laboratory
Improvement Amendments and is a member
of the Centers for Disease Control and
Prevention (CDC) reference laboratory net-
work for lipid measurements (Myers et al.
2000). Serum lipid concentrations were mea-
sured on a Hitachi 911 analyzer (Roche
Diagnostics, Indianapolis, IN) using a choles-
terol esterase and oxidase/peroxidase method
for total cholesterol (Allain et al. 1974) and a
glycerol kinase-based procedure that corrects
for free glycerol in the specimen (Kohlmeier
1986) for triglycerides. Thyroid hormones
were analyzed by ultrasensitive radioim-
munoassay using standard methodologies
(National Academy of Clinical Biology 2002).
Sensitivity for TSH was 0.02 pIU/mL, with a
coefficient of variation of < 20%. Reference
ranges for clinically normal values were
4.5-12.5 pg/dL and 0.71-1.85 ng/dL for T4
and FT, respectively, 85-190 ng/dL for T3,
and 0.3-5.0 for TSH.

Pollutants. Values below the method
detection limits for lead, mercury, PCBs,
and HCB were imputed using the U.S.
Environmental Protection Agency recom-
mended method (U.S. EPA 1998) for toxi-
cants with rates of detection of = 50%. This
method imputes a value for each datum below
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the method detection limit based on the
method detection limit value, the percentage
of observations below the method detection
limit, and the mean and variance of the
detected observations. No imputation method
was used for p,p “DDE because all participants
had detectable levels. To correct for skewness
and normalize the distributions, lead, mer-
cury, PCBs, p,p “-DDE, and HCB were natu-
ral log transformed. The 16 PCB congeners
detected in > 50% of the sample are included
in our analyses for hypothesis testing. PCB
congeners were considered individually and in
three groups: ) all 16 PCB congeners: PCB
congeners detected in > 50% of the sample
(PCB-50%): International Union of Pure and
Applied Chemistry (IUPAC) congeners 52,
70, 74, 84, 87, 95, 99, 101[+ 90], 105, 110,
118, 149[+ 123], 138[+ 164 + 163], 153, 180,
187; b) eight persistent PCB congeners (PCB-
PER8): IUPAC congeners 74, 99, 105, 118,
138[+ 164 + 163], 153, 180, 187; and ) eight
nonpersistent congeners (PCB-NONS):
IUPAC congeners 101[+ 90], 110, 95, 52,
149[+ 123], 84, 70, 87. Persistent PCBs are
congeners with long (years) physiologic half-
lives in humans (Brown 1994; Hansen 1998).
IUPAC congeners 70 and 87 are classified as
nonpersistent based on data presented by
Brown (1994). Mirex levels were categorized
into three groups because > 50% of the sample
had levels below the method detection limit of
0.02 ppb: nondetects (< 0.02 ppb; 54.7%),
low detects (0.02-0.03 ppb; 17.2% of the
sample), and high detects (0.04-1.17 ppb;
28.0% of the sample).

Other variables. Additional information
was obtained by interview with the mother of
the youth, including sociodemographic vari-
ables and breast-feeding history, which was
recorded as “any” or “none.” If a blood sample
could not be analyzed at the laboratory, it was
redrawn at a later point, occasionally creating a
lag between collection of interview data and
blood draw. The variable—time to blood
analysis—describes this time difference.
However, all biologic material analyzed to
determine thyroid hormones and toxicant levels
was from blood drawn at a single point in time.

Statistical analysis. We used multiple
regression analysis to examine the effect of
each toxicant on thyroid hormones when
controlling for all other toxicants, as well as
sex, age, triglycerides, cholesterol, breast-feed-
ing, time of day when blood was collected,
and duration of time between interview and
blood draw. Covariates were chosen on the
basis of bivariate associations (p < 0.1, #-tests,
and correlations) with thyroid hormones
and/or PCBs. A PCB-by-breast-feeding inter-
action was also included in multiple regres-
sion analyses. Breast-feeding can be a major
route of postnatal PCB exposure, and levels of
some PCB congeners typically differ by
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breast-feeding status. Intercorrelations among
toxicants were assessed because high intercor-
relations can render the interpretation of mul-
tiple regression coefficients problematic.

Results

The mean (+ SD) of adolescents’ age was 13.3
+ 1.94 years. The mean triglyceride level was
86.9 mg/dL, and seven participants had
triglyceride values over the laboratory refer-
ence range of 200 mg/dL. The mean choles-
terol measure was 158.5 mg/dL, with 20
participants above the reference range of 200
mg/dL. The mean time of blood collection
was 0831+ 0101 hours, just 1 min earlier
than the median time. The median time
between interview and venipuncture was 1.1
days (-0.003 years), but some cases (27 of
232) had blood redrawn well after interview

to repeat the laboratory analysis. Thus, there
is a difference between mean and median val-
ues for this variable. Nearly half (45.7%) of
the youth were breast-fed as infants.

Mean levels of T4, FT4, T3, and TSH were
within the laboratory reference range (Table 1).
Eight participants had TSH levels above the
laboratory reference range, and four had Tj lev-
els above the normal range. Few participants
had T3, T4, or TSH levels below the laboratory
reference range (7 = 3, 3, and 4, respectively).
FT, and T4 were significantly lower in youth
who had been breast-fed, whereas TSH was sig-
nificantly higher. T3 did not differ.

Lead, mercury, HCB, p,p -DDE, and PCB
levels of Mohawk adolescents are described in
Table 2. Toxicant levels in the study sample
were consistent with a pattern of chronic expo-
sure to multiple toxicants. The highest level of

Table 1. Thyroid hormone levels among Akwesasne Mohawk youth (n = 232).

Percent outside range

Hormones Reference range? Mean + SD Below Above
T, 45-12.5 pg/dL 7.1+1.34 13 0
FTy 0.71-1.85 ng/dL 1.1+0.16 0 0
T3 85-190 ng/dL 138.1+25.93 1.3 1.7
TSH 0.3-5.0 plU/mL 2.5+1.46 1.7 35

aReference range provided by the Clinical Chemistry and Hematology Laboratory, Wadsworth Center for Laboratories and
Research, New York State Department of Health (unpublished data).

Table 2. Toxicant levels of Akwesasne Mohawk adolescents: breast-fed and non-breast-fed (n = 232).

Non-breast-fed (n= 126)

Breast-fed (n=106)

Toxicant GM Median SD Max GM  Median SD Max t
Total PCBs (ppb)
Zero substitution? 071 068 0668 348 095 095 0806 452 -27**
MDL substitution? 1563 141 0557 379 175 167 0695 474 -29*
MDL substitution® 227 214 0452 416 247 239 0589 496 -31**
PCB-50% (ppb)e 059 055 0272 166 077 077 0405 236 -47*
PCB-PER8 (ppb)?” 034 032 0168 144 047 046 0259 138 -6.0**
PCB-NONS (ppb)@9 025 023 0148 094 028 025 0203 133 -17
Persistent PCB congeners (ppb)¢
74 002 002 0010 009 003 003 0029 022 -59**
99 004 004 0021 013 005 006 003 021 -43**
105 002 002 0011 006 002 002 0019 013 -16
118 006 006 0029 016 007 007 0050 028 -32**
138[+ 163 = 164] 006 007 0041 034 008 008 0056 028 -35*
153 007 007 0047 039 011 011 0107 098 -57**
180 003 003 0038 027 005 005 005 035 -49**
187 002 001 0013 013 002 002 0014 008 —43**
Nonpersistent PCB congeners (ppb)?
52 003 002 0027 016 003 002 0029 014 -07
70 002 002 0015 0.1 002 002 0019 008 -15
84 002 002 0007 005 002 002 0010 008 -13
87 003 004 0021 013 004 004 0027 016 -23*
95 002 002 0014 008 003 002 002 015 -15
101[+ 90] 005 004 0034 020 005 005 0048 030 -16
110 005 005 0033 016 006 006 0049 034 -16
1491+ 123] 002 002 0016 008 002 002 0021 012 -07
p,p~DDE (ppb) 031 031 0163 123 045 042 0416 293 59
HCB (ppb)? 003 003 0022 019 004 004 0017 013 -16
Blood lead (pg/dL) 080 130 0965 480 076 145 0907 3.50 0.3
Mercury (pg/dL)? 009 010 0093 058 009 008 009% 052 0.6

Abbreviations: GM, geometric mean; Max, maximum; MDL, method detection limit.

Values below the MDL were substituted with zero. #Values below the MDL were substituted with one half the MDL.
“Values below the MDL were substituted with the MDL. Yalues below the MDL were substituted with values calculated
following the U.S. EPA recommended method. ¢Congeners with = 50% detection rate. IUPAC congeners: 52, 70, 74, 84, 87,
95,99, 101[+90], 105, 110, 118, 149[+ 123], 138[+ 164 + 163], 153, 180, 187. 'Sum of eight persistent PCB congeners with = 50%
detection rate. IUPAC congeners: 74, 99, 105, 118, 138[+ 164 + 163], 153, 180, 187. 9Sum of eight nonpersistent PCB con-
geners with = 50% detection rate. IUPAC congeners: 52, 70, 84, 87, 95, 101[+ 90], 110, 149[+ 123]. *p < 0.05. **p < 0.01.
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lead in the sample was less than half of the
CDC action level of 10 pg/dL (CDC 1991).
Mercury levels of Mohawk adolescents were at
or below background levels of 0.1-0.8 pg/dL
that have been reported for the general popula-
tion (Agency for Toxic Substances and Disease
Registry 1999). Only one Mohawk adolescent
had a mercury level = 5.8 pg/L, the blood mer-
cury level equivalent to the U.S. EPA reference
dose, compared with 5.66% of women of
childbearing age in the general population
(CDC 2004). PCB levels of adolescents and the
proportion of persistent to nonpersistent con-
geners were consistent with both cumulative
and recent exposure [58% of the most com-
mon congeners (PCB-50%) were persistent
ones] (DeCaprio et al. 2005; Schell et al. 2003).

PCB-50%, PCB-PERS, and p,p -DDE
were significantly higher in the breast-fed par-
ticipants (Table 2). When individual PCB
congener levels were compared, all persistent
congeners, except for PCB-105, had signifi-
cantly higher values among adolescents who
were breast-fed as infants. Levels of all non-
persistent congeners, except for PCB-87, were
not significantly different by breast-feeding
status. No difference in lead, mercury, or
HCB was observed by breast-feeding status.
We also considered other factors that could
differ between non-breast-fed and breast-fed
youth (age, sex, two indices of socioeconomic
status, triglycerides, cholesterol, and the
youth’s weight, height, and body mass index)
and found no significant differences.

We used multivariate regression analyses to
examine the effects of different measures of
PCB exposure on thyroid hormone and TSH
levels while controlling for other toxicants
(HCB, p,p -DDE, mirex, lead, mercury) and
additional covariates [age, sex, cholesterol,
triglycerides, time of collection (time of day),
time to blood analysis (years), breast-feeding,
and breast-feeding by PCB interaction]. Results
are presented for two regression analyses using
PCB-PERS as the PCB measure to predict log-
transformed TSH (Table 3) and FT (Table 4).
PCB-PERS was positively associated with
TSH. A breast-feeding-by-PCB-PERS interac-
tion was statistically significant. From this
regression analysis, we calculated the effect of
PCB-PER8 on TSH and FT in both the
breast-fed and non-breast-fed adolescents while
holding all other model variables constant at
their respective means. As PCB-PERS levels rise
from 0.204 ppb at the 5th percentile to 0.871
ppb at the 95th percentile, estimated TSH lev-
els increase by 1.51 pIU/mL among adolescents
who were not breast-fed as infants. Among ado-
lescents who were breast-fed as infants, TSH
levels are not significantly related to PCB-
PERS; at the 95th percentile of PCB-PERS, the
estimated TSH level is 2.8 pIU/mL compared
with 3 pIU/mL at the 50th percentile level.
Repeating the analyses without the individuals
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with TSH, Ty, T3 levels outside the laboratory
range produced results, including those for the
interaction effect, that were unchanged for
effects of PCB-PERS, and only slighdy differ-
ent for effects of PCB-50% and lead. The beta
coefficient estimating the relationship between
PCB50% and Ty increased trivially from
—0.06 to —0.065, with a change in p-value
from 0.057 to 0.033. The effect of lead in the
model was attenuated, and p-values increased
to just above 0.05.

Table 4 shows a negative effect of PCB-
PERS on FT4. The PCB-PERS by breast-feed-
ing interaction term was positive but not
statistically significant. Applying this model to
the non-breast-fed group, predicted FT levels
decrease from 3.1 ng/dL at the 5th percentile
of PCB-PERS to 2.9 ng/dL at the 50th per-
centile and to 2.7 ng/dL at the 95th percentile.
Among breast-fed adolescents, FT was essen-
tially unchanged with increasing PCB-PERS.

PCB-NONS8 was not significantly related
to TSH but was significantly and negatively
related to FT4. Because congener groups were
related to either TSH, FTy, or both, the con-
stituent congeners were tested individually
(Table 5). Of the persistent congeners, 118,
138[+ 163 + 164], and 153 were positively
associated with TSH levels, and only one
nonpersistent congener (110) showed a rela-
tionship with TSH. Two persistent and six
nonpersistent PCB congeners were negatively
associated with FT}, as were all three sum-
mary PCB measures.

HCB was negatively associated with Ty,
and lead was positively associated with T
(results not shown in table). Results for HCB
and lead were consistent regardless of which
measure of PCB burden was included in the
multivariate model.

On examination of the interrelationships
among toxicants, p,p’-DDE was found to be
positively correlated with PCB-50%, PCB-
PERS, and HCB, with coefficients of 0.46,
0.60, and 0.39, respectively. Collinearity
among toxicants was not considered an analyti-
cal complication, because the largest coefficient
was well below 0.80. To ensure that collinear-
ity was not influential, the regression analysis
was performed with models trimmed of covari-
ates that were not significant (p < 0.1) in any
single model (time of blood collection,
p,p -DDE, mirex nondetects vs. detects).
Trimmed models were little changed (< 20%
change in beta coefficients, and the same PCB
and thyroid effects were significant at p < 0.05;
results not shown) when compared with full
models that included time of blood collection,
p.p -DDE, and mirex nondetects versus detects.

Discussion

The most striking observation in this study is
the demonstration of a significant positive
relationship between serum PCB levels and

TSH in adolescents who were not breast-fed,
and the lack of such a relationship in adoles-
cents who were breast-fed—despite the higher
PCB levels found in breast-fed adolescents.
There was also a negative but less significant
relationship between serum PCB levels and
FT4 in non-breast-fed, but not in breast-fed,
adolescents.

Breast-feeding has been shown to be the
largest postnatal source of PCB burden in
chronically exposed populations (Chao et al.
2004; Lackman et al. 2004; Patandin et al.
1999). One would therefore expect PCB
effects to be greater in those youth with higher
PCB levels, but this is not the case here. The
non-breast-fed youth displayed evidence of
stronger associations between PCB levels and
TSH and FT} than the breast-fed group with
higher PCB levels. It is possible that breast-
feeding has a beneficial effect, reducing the
impact of prenatal PCB exposure on measures
of thyroid function. Studies have documented
the benefits of breast-feeding on development,
mortality, and morbidity (Anderson et al.

PCBs and thyroid hormone levels in youth

1999; Howie et al. 1990; Kramer et al. 2001;
Singhal et al. 2001; WHO Collaborative
Study Team on the Role of Breastfeeding on
the Prevention of Infant Mortality 2000;
Wilson et al. 1998). However, the suggestion
that breast-feeding is protective of PCB-
induced alterations of thyroid function is not
concordant with the higher levels of PCBs in
breast-fed adolescents and the expectation of a
dose—response relationship.

A more likely explanation for our observa-
tions is that prenatal exposure to PCBs alters
thyroid function to a greater degree than early
postnatal exposure or exposure during child-
hood and adolescence. The notion of a criti-
cal window is consistent with findings on
organochlorine exposure and brain develop-
ment. In newborn mice where brain develop-
ment is in a critical period, exposure to
persistent organochlorines, such as PCBs, has
been shown to cause severe, sometimes irre-
versible, brain disruption (Eriksson 1997;
Eriksson et al. 2002). If the effect of PCBs on
thyroid function is sensitive to the timing of

Table 3. Multivariate regression analysis predicting TSH levels (plU/mL)? of Akwesasne Mohawk adoles-

cents (n=232).

Characteristic SE Std B t p-Value
Constant 1.062 0.674 1.576 0.117
Age (years) 0.026 0.021 0.082 1.250 0.213
Sex (male/female) -0.187 0.080 -0.150 -2.326 0.021
Breast-feeding (any/none) -0.202 0.203 -0.162 -0.993 0.322
Time of blood collection -0.000 0.000 -0.015 —-0.230 0.818
Time to blood analysis (years) —0.065 0.040 -0.103 -1.639 0.103
Cholesterol (mg/dL) —0.001 0.002 -0.055 -0.778 0.438
Triglycerides (mg/dL) 0.003 0.001 0.234 3.323 0.001
HCB (ppb)? 0.084 0.106 0.055 0.798 0.426
p,p-DDE (ppb)? -0.076 0.109 -0.060 —-0.695 0.488
Blood lead (ug/dL)? -0.017 0.029 —-0.036 —0.562 0.575
Mercury (pg/dL)? -0.026 0.053 —0.031 —0.485 0.628
Mirex (nondetects vs. detects) -0.104 0.108 -0.083 —-0.960 0.338
Mirex (high detects vs. low and nondetects) -0.219 0.119 —0.158 —-1.840 0.067
PCB-PER8 (ppb)? 0.431 0.149 0.309 2.899 0.004
PCB-PER8 x breast-feeding —0.505 0.192 —0.396 —2.626 0.009

Std, standardized.
aNatural log transformed.

Table 4. Multivariate regression analysis predicting FT4 levels (ng/dL) of Akwesasne Mohawk adolescents

(n=232).
Characteristic SE Std B t p-Value
Constant 1.009 0.183 5.501 0.000
Age (years) -0.007 0.006 -0.085 -1.237 0.217
Sex (male/female) 0.009 0.022 0.028 0.414 0.680
Breast-feeding (any/none) 0.025 0.055 0.077 0.451 0.652
Time of blood collection -0.000 0.000 -0.052 —0.786 0.433
Time to blood analysis (years) 0.019 0.011 0.118 1.793 0.074
Cholesterol (mg/dL) 0.000 0.000 0.085 1.156 0.249
Triglycerides (mg/dL) 0.000 0.000 —0.068 -0.927 0.355
HCB (ppb)? -0.027 0.029 -0.067 -0.935 0.351
p,p-DDE (ppb)? -0.003 0.030 -0.008 —-0.092 0.926
Blood lead (ug/dL)? 0.001 0.008 0.010 0.145 0.885
Mercury (pg/dL)? 0.007 0.014 0.033 0.501 0.617
Mirex (nondetects vs. detects) -0.010 0.029 -0.030 —-0.330 0.741
Mirex (high detects vs. low and nondetects) -0.016 0.032 -0.046 —0.508 0.612
PCB-PERS (ppb)? -0.099 0.040 -0.272 —2.443 0.015
PCB-PER8 x breast-feeding 0.066 0.052 0.198 1.262 0.208
Std, standardized.
aNatural log transformed.
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the exposure also, an effect of PCBs that
occurs only with prenatal exposure might be
observable only among adolescents who expe-
rienced little postnatal exposure to PCBs. For
non-breast-fed adolescents, PCB levels would
be expected to more closely reflect prenatal
exposure. Breast-feeding exposes children to a
comparatively large dose of PCBs and is a
major source of overall PCB body burden
(Ayotte et al. 2003; Lackman et al. 2004;
Lanting et al. 1998). Thus, breast-feeding
may add PCBs that obscure the relationship
between prenatal PCB exposure and thyroid
function by adding random variation in PCB
levels, rather than protecting the thyroid
from the disruptive influence of PCBs. Breast-
feeding is not associated with additional risk
to thyroid disruption, despite the higher levels
of PCBs resulting from breast-feeding.

There are a number of reasons to suspect
that prenatal PCB exposure might alter thyroid
function later in life. PCBs disturb differentia-
tion of normal human neural progenitor cells, a
thyroid hormone—dependent process (Fritsche
et al. 2005); inhibit thyroid hormone—depen-
dent extension of dendrites (Kimura-Kuroda
et al. 2005); and cause a decrease in pituitary
and thyroid responses to thyrotropin-releasing
hormone stimulation (Khan and Hansen
2003). Gauger et al. (2004) have reported that
PCBs have direct actions on several thyroid
hormone-responsive genes in the fetal rat brain
and increase the expression of neuroendocrine-
specific protein A, RC3/neurogranin, and Oct-1.
These actions occur independently of the

reduced circulating levels of T3 and Tj in the
dam. Miyazaki et al. (2004) found that PCBs
suppress thyroid receptor-mediated transcrip-
tion and suggested that this is particularly the
case in the developing nervous system. Thus,
there are several possible mechanisms whereby
PCB exposure during development might alter
thyroid function permanently.

Prenatal exposure to PCBs also causes a
greater and more persistent alteration of other
organ systems than does postnatal exposure. In
children, decrements in neurobehavioral func-
tion resulting from PCB and dioxin exposure
are primarily a result of prenatal exposure (Lai
et al. 2001; Vreugdenhil et al. 2002). Prenatal
exposure to PCBs and dibenzofurans has been
found to alter semen quality (Guo et al. 2000)
and sperm function (Hsu et al. 2003) in adult
humans and alter fercility in adult rats
(Kuriyama and Chahoud 2004).

Our results show that not all PCB con-
geners have similar effects. We observed statis-
tically significant, positive associations between
TSH levels and PCB congeners 110, 118,
138[+ 163 + 164], 153, as well as with two
PCB groupings (PCB-50%, PCB-PERS). Of
the four individual congeners/triplets, three are
persistent, three are di-orzho congeners, and all
four are highly chlorinated. Negative associa-
tions were observed between FTy levels and
three congener groupings (PCB-50%, PCB-
PERS8, PCB-NONB), as well as congeners 52,
70, 84, 87, 101[+ 90], 138[+ 163 + 164],
149[+ 123], and 153. Six of these eight con-
geners are highly chlorinated, and five are

Table 5. Association between different measures of PCBs, each entered individually in multiple regression

analyses,? and thyroid hormones and TSH (n = 232).

Standardized f3

PCBs (ppb)2< TSHY FTy T4 Ts
PCB-50%¢ 0.238* -0.269** —0.134 —-0.053
PCB-PER8® 0.309** -0.272¢ —0.121 -0.020
PCB-NON8' 0.131 -0.242¢ —0.133 —0.061
Persistent PCB IUPAC congeners
74 0.145 -0.229 —0.111 0.005
99 0.117 -0.173 —0.007 —-0.011
105 0.014 -0.022 —0.040 -0.047
118 0.267** -0.191 —0.049 —-0.026
138[+ 163 + 164] 0.349** —-0.234* —0.116 -0.119
153 0.285** -0.324** —0.158 -0.037
180 0.193 -0.125 —0.067 0.037
187 0.164 -0.124 —-0.078 -0.033
Nonpersistent PCB IUPAC congeners
52 0.056 -0.191* —0.083 —-0.100
70 0121 -0.236" —0.119 —0.091
84 0.062 -0.226* -0.120 —0.011
87 0.150 -0.267** —0.189* -0.028
95 0.014 -0.196 —0.141 —0.055
101[+ 90] 0.103 -0.214* —0.095 -0.014
110 0.186* -0.167 —0.111 -0.070
149[+ 123] 0.176 -0.248* —0.073 -0.018

aControlling for age, sex, time of day of collection, time to blood analysis, breast-feeding (any/none), cholesterol, trigly-
cerides, breast-feeding x PCBs, lead, mercury, HCB, DDE, and mirex. ?Log transformed. “Values below the method detec-
tion limit were substituted with values calculated following the U.S. EPA recommended method. 9Congeners with = 50%
detection rate. IUPAC congeners: 52, 70, 74, 84, 87, 95, 99, 101[+ 90], 105, 110, 118, 149[+ 123], 138[+164+163], 153, 180, 187.
eSum of eight persistent PCB congeners with = 50% detection rate. [UPAC congeners: 74, 99, 105, 118, 138[+164+163], 153,
180, 187. 'Sum of eight nonpersistent PCB congeners with = 50% detection rate. IUPAC congeners: 101[+ 90], 110, 95, 52,

149[+123], 84, 70, 87. * p < 0.05. ** p < 0.01.
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di-ortho congeners. Only congener 87 was
associated with Ty levels, and none of the
tested PCB congeners or groupings was associ-
ated with Tj levels. The results presented here
on the relationships of PCBs to TSH, FTy,
and Tj are consistent with a preliminary
report on a sample of 113 Mohawk adoles-
cents who participated in this study (Schell
et al. 2002), and with a recent report showing
an increasing incidence rate of hypothy-
roidism among patients using the St. Regis
Mohawk Health Service between 1992 and
1995 (Negoita et al. 2001).

The positive association observed here
between PCBs and TSH, and the negative
association between PCBs and thyroid hor-
mones is supported by the literature. PCBs (as
individual congeners or mixtures) have repeat-
edly been shown to alter thyroid function and
hormone levels in experimental animals,
including thyroid-hormone suppression and
cell-mediated immunomodulation (Brouwer
et al. 1998; Hallgren et al. 2001; Kato et al.
1998; Kuriyama et al. 2003; Li and Hansen
1996a, 1996b; McNabb and Fox 2003; Morse
et al. 1993; Ness et al. 1993; Seo et al. 1995;
Smits et al. 2002). I utero exposure of rats pro-
duces depressed plasma T levels in late gesta-
tion and in newborns (Morse et al. 1993; Ness
et al. 1993; Seo et al. 1995), and prepubertal
exposure can depress serum Ty levels in rats as
well (Li and Hansen 1996a, 1996b). Studies of
PCB-thyroid effects in humans have been less
consistent. In men and women who consumed
fish from the Great Lakes, serum PCBs were
associated with lower Ty levels. Inconsistent
associations were found with TSH and PCBs
(Persky et al. 2001). Using data from the
National Health and Nutrition Examination
Survey (NHANES) (1999-2002), Turyk et al.
(2007) found PCBs to be positively related to
TSH among older women, yet inversely associ-
ated among older men. Additionally, a negative
relationship of TEQ to T4 was seen in both
men and women, with a stronger correlation
among women. No associations were reported
for younger NHANES participants (Turyk
etal. 2007). A study of men between 20 and 64
years of age found inverse relationships between
T3 and two persistent PCB congeners (138,
153), the sum of PCBs, and HCB (Meeker
et al. 2007). In the Dutch multicenter study of
newborns, higher PCB and dioxin levels in
breast milk were positively associated with TSH
levels and negatively associated with FT levels
(Koopman-Esseboom et al. 1994; Sauer et al.
1994). One-year-old Japanese infants who were
breast-fed had lower T3 and Ty levels at higher
levels of polychlorinated dibenzo-p-dioxins and
dibenzofurans and coplanar PCBs in mothers’
milk, although TSH levels were unrelated
(Nagayama et al. 1998). Positive associations
between congener 118 and TSH levels have
been reported in 320 German schoolchildren
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between 7 and 10 years of age (Osius et al.
1999), and 98 newborns in Spain (Ribas-Fito
et al. 2003), as well as in the present study. A
longitudinal study of 38 breast-fed infants in
the Netherlands reported a positive association
between dioxin concentration in breast milk
and TSH levels at 11 weeks (Pluim et al. 1992,
1993). However, Pluim and coworkers (1992,
1993) also observed higher T} levels at birth, 1
week, and 11 weeks, contrary to results
reported here as well as by others described
above. Negative associations between serum
PCB levels and FT4 have been reported in
neonates from coastal communities in Quebec
(Sandau et al. 2002) and adults from a Spanish
village (Sala et al. 2001), whereas in an adult
population from Quebec there was a negative
relationship between levels of three PCB con-
geners (138, 153, and 180) and T; but not
with TSH or FT (Takser et al. 2005).

PCBs have long been suspected to affect
thyroid hormone signaling because of struc-
tural similarities between PCBs and thyroid
hormones (Porterfield 1994). Evidence sug-
gests that two plausible mechanisms may be
responsible for the PCB-induced reduction in
thyroid hormones, particularly T: disruption
of thyroid hormone transport (Cheek et al.
1999; Darnerud et al. 1996) and induction of
hepatic metabolism (Morse et al. 1993; Zhou
et al. 2001). Results presented here are consis-
tent with either mechanism of action. In the
former mechanism, thyroid hormones are
bound and transported primarily by two
plasma proteins in humans, transthyretin
(TTR) and thyroid-binding globulin (TBG)
(Larsen et al. 2003). TTR is more likely to be
involved as the transport protein in humans,
because hydroxylated PCBs have greater affini-
ties for TTR than does T4 (Cheek et al. 1999;
Lans et al. 1993, 1994; Rickenbacher et al.
1986). In contrast, few hydroxylated or unme-
tabolized PCBs bind TBG (Lans et al. 1993,
1994). In one study, after PCB exposure, the
degree of thyroid hormone reduction in rats
coincided with binding of T to the plasma
thyroid hormone transporter TTR, suggesting
that PCB-induced T reductions were attrib-
uted primarily to disturbed transport
(Hallgren and Darnerud 2002). The second
mechanism that has been investigated is
induction of hepatic metabolism. Several stud-
ies have suggested that PCB-induced T4
reductions result from increased metabolism
of the hepatic microsomal enzyme uridine
diphosphoglucuronosyl transferase (UDPGT).
This induction is primarily the result of aryl
hydrocarbon receptor activation by dioxin-like
PCB congeners (Barter and Klaassen 1992,
1994; Beetstra et al. 1991; Morse et al. 1993;
Van Birgelen et al. 1995; Zhou et al. 2001).
UDPGT catalyzes glucuronidation of T4 and
consequently increases biliary excretion of Ty
(Bastomsky 1974). However, others suggest a

moderate or nonsignificant effect of UDPGT
induction on PCB-mediated decreases in T
levels (Hallgren and Darnerud 2002; Hallgren
et al. 2001). Because of insufficient specimen
availability, we could not obtain data for the
most potent dioxin-like congeners (CBs 126
and 169), which are typically present in
human serum at levels two or three orders of
magnitude lower than the most prevalent con-
geners. Therefore, we could not employ a
dioxin-like TEQ approach (Van den et al.
2006) that may have provided additional sup-
port for the latter mechanism.

We also observed a negative association of
HCB with T4 and a positive association
between lead and Tj. The negative association
of HCB with Ty levels among Akwesasne ado-
lescents is consistent with the literature.
Numerous animal studies have demonstrated
HCB-induced hypothyroidism, with T levels
being particularly sensitive in rats (Alvarez
et al. 2005; Foster et al. 1993; Kleiman de
Pisarev et al. 1990, 1995; Rozman et al. 1986;
van Raaij et al. 1993). Lower T levels associ-
ated with HCB exposure may be attributed to
peripheral disposition of T4 (Kleiman de
Pisarev et al. 1989) or increased hepatic Ty
metabolism (Kleiman de Pisarev et al. 1990).
It has also been suggested that HCB affects
the thyroid in rats via its metabolites, particu-
larly the main metabolite pentachlorophenol,
an effective competitor for T4 binding sites
(van Raaij et al. 1991a, 1991b). In Turkey,
37% of patients with HCB-induced porphyria
also developed enlarged thyroid glands
(Gocmen et al. 1986). In a highly exposed,
rural population residing in Catalonia, Spain,
HCB levels were associated with lower Ty lev-
els (Sala et al. 2001). However, no relationship
was observed between HCB and TSH levels in
98 newborns born in a highly HCB-polluted
area (Ribas-Fito et al. 2003).

Although animal studies have shown lead
to inhibit thyroid function and reduce circu-
lating levels of T3 and T4 (Sandstead 1967;
Shrivastava et al. 1987; Singh and Dhawan
1999), studies of thyroid functioning in
humans have yielded mixed results. Some
report no relationship (Erfurth et al. 2001;
Gennart et al. 1992; Schumacher et al. 1998),
whereas others report depressed thyroid hor-
mone levels and/or function (Liang et al.
2003; Robins et al. 1983; Sandstead et al.
1969). It is also possible that lead may have
different effects on thyroid hormones at dif-
ferent levels of exposure. In a study among
occupationally exposed men, lead was posi-
tively associated with T3, T4, FT4, and TSH
among workers with blood lead levels from 8
to 50 pg/dL and negatively associated with T3
and T4 when blood lead levels exceeded
50 pg/dL (Lopez et al. 2000). Directional
differences in reported effects may stem from
different levels and durations of exposure, and
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may explain the positive association with T3
observed here among Akwesasne adolescents.

Toxicant levels in Akwesasne youth (Schell
et al. 2003) are somewhat lower than reported
levels in older children and adolescents from
several other studies (Karmaus et al. 2001;
Mazhitova et al. 1998; Nawrot et al. 2002;
Osius et al. 1999; Staessen et al. 2001). These
populations with higher toxicant levels typi-
cally involve acute or known, well-defined
sources of exposure. This suggests that toxicant
body burdens reported here and, consequently,
associations observed with thyroid hormones,
may be present in other populations without
large or acute exposures. In addition, it is
unlikely that iodine insufficiency is responsible
for these results. Sodium intake estimated by a
semiquantitative food frequency questionnaire
(Block et al. 1990, 1992; National Cancer
Institute 1999) was more than sufficient to
provide the recommended daily intake of
iodine, assuming conservatively that only one
third of the consumed sodium was iodized. An
alternative explanation for thyroid effects in
this sample is exposure to fluoride, a thyrotoxi-
cant (National Research Council 2006). In
1980, cattle on Cornwall Island within the
reservation and immediately downwind from
an aluminum plant exhibited fluorosis despite
a fluoride level in forage well below the toler-
ance level set by the National Academy of
Sciences (Crissman et al. 1980). Human popu-
lations were exposed to fluoride through locally
grown fruits and vegetables rather than from
fish, the main route of PCB exposure. There
was little evidence of effects on thyroid func-
tion: Men and women in the high fluoride
group did not differ from those in a low expo-
sure group in terms of Ty4; high fluoride
women had higher TSH, whereas the men had
a significantly lower TSH level (Selikoff et al.
1983) than those in the low fluoride group.

In summary, our results demonstrate a
reduction in thyroid function in adolescents
in relation to their serum levels of PCBs, but
demonstrate that this relationship is much
stronger in adolescents who were not breast-
fed, even though breast-fed adolescents have
higher serum PCB levels. These observations
are consistent with the hypothesis that pre-
natal exposure to PCBs alters thyroid function
in a long-lasting manner.
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